N
ma
, coORPOMR.ATION
SMATH
STRING ARITHMETIC EXTENSIONS
FOR
@ MUBASIC / RT-11
TERAK Publication Number 60-0018-001

ﬁw REVISED

COPYRIGHT (C) TERAK CORPORATION 1979

14405 NORTH SCOTTSDALE ROAD ¢ SCOTTSDALE, ARIZONA 85254 « (602) 991-1580

The information in this document is subject to change without
notice and should not be construed as a commitment by TERAK
Corporation. TERAK Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a
license and may be used or copied only in accordance with the
terms of such Tlicense.

TERAK Corporation assumes no responsibility for the use or

reliability of its' software on equipment that is not supplied
by TERAK.

The following are trademarks of TERAK Corporation:

TERAK

The following are trademarks of Digital Equipment Corporation:

RT-11

The following are trademarks of the TRUSTEES OF DARTMOUNT COLLEGE:
BASIC

First Release 5 Nov 76
Revised 26 Jun 79

SOFTWARE SPECIFICATION
STRING ARITHMETIC PACKAGE

T. PRELIMINARY

MUBASIC, or BASIC-11, currently carries 16 bits of accuracy in

integer computation (restricted to + and -) and 24 bits of accuracy

in the mantissa of all floating point calculations (all *, /, and +,

- when result overflows). A1l transcendental functions are performed
in floating point. These accuracies are equivalent to 5-1/2 digits
(integer) and 6-1/2 digits floating. Accounting functions require
further precision: at least 12 digits, but do not generally require
floating point. An additional restriction is that an integer variable
can only be printed to six digits by the BASIC print routines; to
print more digits, concatenated prints or strings must be used. Since
most accounting data will be carried as strings to avoid trucation

to 6 digits, the requirement exists for four function arithmetic

which operates directly on strings.

2. CALL SYNTAX

Five subroutines are provided in the SMATH package: ADD$, SUB$, ADRS,
MUL$ and DIV$. These may be called implicitly (by reference only)

or explicitly (by the CALL statement). The former is recommended

as it is more efficient. The operations are as follows:

IMPLICIT CALL FUNCTION
'ADD$ (BS$, C$, AS$) A$ = B$ + C$
SUB$(B$,C$,A$) A$ = B$ - C$
MULS$ (B$,CS$,A$) A$ = B$ * C$
DIV$(BS$,CS$,A$) A$ = B$ / C$
A$ = B$ + C$
ADRS$ (B$, C$, A$) WITH A$ TRUNCATED AT LEAST
SIGNIFICANT NON-ZERO DIGIT
OF B$ PLUS 1

Each c:11 statement must reference three arguments, separated by
commas (as shown above). The A$ (target) argument must be a string
variable. The B$ or C$ (operand) arguments may be string variables,
Titeral strings, or string expressions. Violation of these rules
will produce a ?ARG or ?SYN error stop.

-1-

r ngXAMPl.EAS . 32-DEC-76. ‘ PAGE 1

1 REM ROUTINE TO COMPARE TWO.ARITHMETIC”STRINGS
2 REM AND BRANCH IF VALUE (B%) < VALUE (C3)

3 REM '
le REM ENTER WITH B$ & C$ LOADED WITH VALID NUMERIC STRINGS
15 REM |

20 SUE$(E$,C$,A$) \ REM A$= B - 3

3¢ IF SEG$(A$,1,1)="-" THEN 10¢@

35 REM

4¢ REM IF RESULT IS NEGATIVE, BRANCH TC 1¢ee

EXAMP2.BAS 30-DEC-76 PAGE 1

1 %EM ROUTINE TO COMPUTE - .g15 * X$ + Y4
2 REM AND STORE RESULT INTO Z¢

3 REM - L
12 MULz(X$, .0157,29%)
2¢ ADD$(Y$,28,29%)
- EXAMP3.BAS 30-DEC-76 PAGE 1

("L REM ROUTINE TO DIVIDE TWO NUMBERS, CHECK FOR ERRORS,
2 REM AND ROUND THE ABSOLUTE VALUE OF THE RESULT TO CENTS

3 REM

16 DIV$(B3,C$,Q%) \ REM . Q$ = BS / C$ '

15 IF Q$="7" THEN PRINT "?DIV ERR?" \ STOP \ REM CHECX FOR DIVISION ERR
2¢ ADR$(SEG$(Q$.2,255), 205 ,A%) \ REM REMOVE SIGN CHARACTER AND ROUND

3. OPERAND STRING SYNTAX

In general, strings which are valid arguments for the VAL function
are valid for the SMATH functions. The following rules apply to ADRS,
ADD$, SUB$, MUL$ operands (2nd and 3rd argumentsg. DIV$ places a few
additional restrictions upon its operands. Operands which violate
the following rules will cause a one character string: "?" to be
returned in A$, and the program will continue running. Since "?" is

an illegal operand string, subsequent computation on A$, using SMATH
will propogate "?" results:

B$ and C$ must be strings of zero to 255 digits, period, minus sign,
o~ plus sign, spaces, and the characters "I" thru "R" (IBM sign). Any
L other character will cause a "?" returned in A$. A null string will

be interpreted as zero.

SYNTAX rules are:

Spaces are ignored except in length of string

No more than one period ‘

Period, if present, must follow any + or -

Only one of + or - may be present

If noneof + or - are present, + is assumed

+ or - may not occur after first digit (incl. P)

One of the characters "I" thru "R" may appear once only.
It will be interpreted as "P" thru "9" and the value
represented will be negative, as if a minus sign were
present. This "IBM sign" will terminate the string.

A "-" may not appear in the same string with an IBM sign.
Leading & trailing zeroes are ignored except:

If no period is .present, a period is assumed at the end of
the string.

Strings are considered terminated on right by:

Last character or 16th character, or IBM sign.

DIV$ places the following restrictions upon its operands. C$ in
DIV$(B$,C$,A$) must not represent zero. A "?" will be returned if
division by zero is attempted. The result from division must be
representable to sixteen digits of significance, with sixteen
decades of magnitude, i.e. the result must be between

99999999999999990000000000000000
and
.000000000000000010000000000000000

or a "?" return will occur, avoiding a loss in significance, and
implying the error lies in the operands.

(Note that though the trailing zeroes in the second number will be
truncated, 16 digits of significance is implied.)

The following are examples of valid and invalid operand strings.
2\ represents a space.

Example Interpretation

é%wéxA,zﬁslkJ_ VALID.iL.truneated at-16 characters =

| 6 spaces | ‘ null string = P.

LDINAN 203N ~ VALID...123.p

D =120 AN "~ VALID...-12p9.9

+128.E2 INVALID...i1legal char

JAVAVAVAVA VALID.....all1 spaces =null string =

1201%#2 : VALID...-12pp.p (IBM. sigm terminates
' string)

6R VALID...-69 (IBM sign)

p.

fk‘ 4. DESTINATION STRING SYNTAX

In general, the destination string will conform to the rules for
operand strings except in length. The result of ADD$, SUB$, MUL$
or DIV$ will be a string of from two to thirty-three characters.
A11 Teading zeroes left of the point and trailing zeroes right

of the point will be removed, and the number will be left justified
with no space characters. A decimal point will be inserted unless
it would bé the last character.

Zero will always be represented as the string " p", when using +-
signs or "P" when using IBM signs.

Because of point alignment, addition or subtraction can produce

a destination string of up to 33 characters, e.g. a 33

character string will occur in

SUB$(".123412341234123","1234123412341234",A%)

Multiplication can produce a destination string which is smaller
and/or larger than that allowed by division. This is because
no loss in significance occurs in

MUL$(".000000000000001",".00000000000000]",A$)
or in
ﬁwl MUL$("9876987698769876","9876987698769876",A$)

Multiplication will produce a destination string of from 2 to
33 characters.

Division will always produce a quotient with 16 digits of significance.
Depending upon point alignment, the destination string will be from

2 to 33 characters. Prior to truncation, trailing zeroes are
considered significant. The destination magnitude (absolute value)
will be between

99999999999999990000000000000000
and

.00000000000000001000000000000000

i.e., 16 digits of significance and +16 decades. If quotient is
outside this range, overflow or underflow occurred, and "?" is
returned in A$.

No remainder is generated.

Signs will be represented in one of two ways, depending upon the

fM\ type of sign last encounted as a negative operand. If "-" was Tlast
used, all results will have a leading space or "-" character. If
an IBM sign was last used, all results will not have a leading space

-4-

or "-", and the last character of the string will be returned

as "I" thru "R" to indicate a negative result. Upon loading MUBASIC,
the space and "-" convention is assumed, but may be changed by
passing an IBM sign in one of the operands. See Appendix.

The resultant string from the ADR$ call is an exception to some of
the above rules.

ADR$ (B$,C$,A$) performs an addition (like ADD$), then truncates A$
at the digit position corresponding to the least significant non-
zero digit position of C$, plus 1. Thus, if C$ = ".pp5", B$ will

be rounded to nearest .p1 and placed in A$. (or if C$ = "5p", B$ -
will be rounded to hundreds and placed into A$). ADR$ will override
the normal suppression of trailing zeroes, if necessary. If C$ is

a null string, A$ will be truncated to the units position.

Examples:

Call Result (A$)
ADR$("1234.5678",".05",A$) 1234.6
ADR$("1234",".005",AS$) 1234.00
ADR$("1234.56","50",A$) 1200
ADR$("123.3","-50",A$) 0

5. ALGORITHMS

A11 calculations are made in excess - 6fg (ASCII) BCD. Addition

or subtraction will product a true result with carry (borrow)
correction required. Data is manipulated one digit per byte. Multi-
plication of individual digits is accomplished in 2's compliment
binary. Division is accomplished by the nonrestoring method. The
remainder will be uncorrected (sign may be different from quotient
sign) and is not returned.

6. ERRORS

Since up to 32 characters (sans sign character) are allowed for
output, no arithmetic error can occur with addition, subtraction,
or multiplication. Two errors can occur under division. First,
attempted division by zero will produce the "?" return.

Second, if the quotient cannot be correctly represented in 16
digits significance and 16 decades of magnitude, the "?" error
return will occur.

Any of the syntax errors in the call statement, or failure to supply
the correct number or type of arguments will result in the ?SYN or
?ARG error and the program will stop.

g

i~

7. DELIVERY

SMATH is delivered on floppy disk as a set of eight object
modules, as follows:
FUNCTIONS SUPPORTED

MODULE NAME ADD$ SUB$ ADR$ MUL$ DIV$ IBM SIGN Séﬁﬁs]ﬂ
SMATH.0BJ X X X X X X 696
SMATHP. 0BJ X X X 407
SMATH1 . 0BJ X X X X 442
SMATH2.0BJ X X X X X 661
SMATH3.0BJ X X X X X 671
SMATH4.0BJ X X 382
SMATHS. 0BJ X X X | 417
SMATH6 . 0BJ X X X X © 636

The user should select one of these to provide the required
features. In addition, two call interface files are provided:

MUBISA.O0BJ
MUBISA.MAC

The selected SMATH module and MUBISA.0BJ, substituted for MUBI,

are linked into MUBASIC. In addition, MUBC (call support)

should be substituted for MUBNC (no call support). Linked

overhead for MUBISA.O0BJ (SMATH related) is 1579 words. The

source file is provided for users who may have other call functions
supported. In this case, MUBISA.MAC should be merged with the
users call interface file, using the editor, and then assembled

to an object file to be used when linking MUBASIC.

The software is made available under license for use on a single
data processing system and may not be copied or otherwise made
available to any other person than the Ticensee except for use
on such system and to one who agrees to these terms. Title to
and ownership of the software shall at all times remain in TERAK.

APPENDIX

A.1 Removal of IBM sign feature

A global symbol is included in the SMATH object modules
(SMATH thru SMATH2) to locate the IBM sign option word.
The symbol is "IBMOPT" and will appear at link time, in
the 1ink map, under the SMATH CSECT. (1) The IBM sign
support may be defeated by patching this location to a
NOP. For example, assuming MUBASIC has been linked with

SMATH in the root section:

.R PATCH
*FILE NAME -- MUBASA/0 <CRD>
*?NOT IN PROGRAM BOUNDS? (2)
*400;B

*TBMOPT/101445 240 {CR>
*E

The IBMOBT global will not appear in the SMATH object
modules without IBM SIGN.

(2) The error message and setting of the "B" register is
peculiar only to files linked with other than 1000
as the bottom address.

A.2 Use of SMATH for conversion of formats

SMATH is useful to format strings by inserting decimal points
or trailing zeroes or by converting sign formats. The following
examples will illustrate these functions.

oF

IAAMP4.BAS 3@-DEC-76 | o PAGE 1

. REN ROUTINE TO TAKE A REAL VARIABLE, CONVERT TO STRING, AND

~ REM INSERT A DECIMAL POINT, INTERPRETING THE NUMBEK AS CENTS

& REM | : - .

1¢ MUL'(STR§(1NTgX)g ".217,A%) \ REM INTEGERIZE, STRING-IZE, AND MEY BY .01

2¢ ADR?(A$. .005" ,As§ \ REM FORCE TWO DECIMAL POSITIONS (INCL. ZEROES)

3¢ A$="$¢ "&A$ \ REM ADD A DOLLAR SIGN (NCTE...POSSIBLE SIGN HASNOT FEEN REMCVET

EXAMPS.BAS 32-DEC-"76 . PAGE 1

1 REM ROUTINE TO INPUT A NUMFER FROM THE OPERATOR, AND CHECX IT FOR
2 REM BOTH SYNTAX, AND RANGE
S REM 5
5 PRINT "ENTER VALUE TWIXT $1 AND $12e2";
1¢ INPUT #0:X3% |
20 SUB$ (X3,,1°,2%) \ REM VALUE ENTERED MUST _BE GREATER TEAN $1.¢¢
3@ 1F z%=?" THEN PRINT Z$ \ GO "C 5 \ REM "2~ —> ILLEGAL SYNTAX IN X&
4¢ 1F SEG$(Z%,1,1)="-" THEN PRINT "2T00 SMALL?" \ GO TC 5
FTo0 SUBS(X$,°120¢",2%) \ REM VALUE ENTERED MUST BZ IESS THAN $1€8¢.22
- gg ;gMSEG$(Z$.1,1)= THEN PRINT "2TCO BIG?" \ GO T0 5
8¢ REM LINES 49,50,6¢ COULD ALSO WAVE USED THE VAL FUNCTION FOR COMPARISON

EXAMP6.BAS 3@-DEC-76 , FAGE 1

1 REM ROUTINE TO CONVERT 12¢ STRINGS IN VIRTUAL FILE VF1¢(0o)

2 REM FROM SPACE/MINUS SIGN NOTATION TO IBM SIGN NOTATION

3 REM AND STORE INTO VIRTUAL FILE VF74(99) (v

1¢ FOR I=¢ TO 99 Lo
20 ADD$(I",VF1(I),¥$) \ REM LAST SIGN TYPE SCANNED RBY SMATE WILL BF. IFM "-¢
3¢ REM ZERO IS ADDED TO X$ (= X$) AND X% IS IBM SIGNED

4¢ VF?(I)=X$ \ REM VIRTUAL FILE TARGET VARIABLE CAN ONLY APPEAR.

5¢ REM S ON LEFT OF AN ASSIGNMENT STATEMENT, NOT AS ARGUMENT
62 NEXT I :
EXAMP7.BAS 38-DEC-76 ' | PAGE 1

1 REM ROUTINE TO DO THE OPPOSITE OF ABCVE RCUTINE (EXAMPE)
7™ FOR I=¢ TO 99 ¥ o
© 2¢ ADD$("-8",VF1(I),X$) \ REM LAST SIGN TYPE SCANNED BY SMATH WIIT BE -
3¢ VF7(I)=X$% , .
40 NEXT 1

s

-8-

